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ABSTRACT 

M-ary pulse position  modulation  (PPM)  has received considerable attention for direct- 
detection photon communications over unguided channels. The analysis generally assumes that 
the signaling set is orthogonal. However  the orthogonality of the signaling set will be destroyed 
by the finite area  and bandwidth of optical detectors, resulting in severe intersymbol interference. 
This paper presents the analysis of a trellis-based pulse position modulation  (T-PPM) scheme for 
photon communications with non-rectangular pulses. The novelty of the scheme includes the use 
of a set partitioning methodology to increase the  minimum distance using a simple convolutional 
encoder. The Viterbi algorithm is  used  at  the receiver to separate the signaling set as part  of  the 
demodulation process. It  has  been  shown  that  T-PPM  will restore performance losses due to 
reduced peak intensity during the detection process. Furthermore, for a large range of 
background radiation levels, the average number of photons per information bit for T-PPM  is 
smaller than  that of the regular PPM.  Numerical examples show  that for a symbol error rate of 

256-ary  T-PPM could be reduced by as much as 2 dB. 
when  the  received pulses extends over 4 PPM slots, the average laser energy per symbol for 

' The  research described in this  paper was carried out by the  Jet  Propulsion Laboratory, California 
Institute of Technology under a contract with the  National  Aeronautics and Space 
Administration. 



1 Introduction 
Pulse-position modulation (PPM) has received considerable attention  as  the 
modulation of choice for direct-detection  optical  communications over un- 
guided  optical  channels.  There  are  several key aspects of this  modulation 
that  are critical to  the deployment of this  modulation scheme for deep-space 
communications. First,  the presence of a pulse in the symbol  frame  regardless 
of the  transmitted symbol  benefits the clock recovery  sub-system,  whereas an 
on-off-keying (OOK) system  may suffer a synchronization loss if a sequence 
of 0’s is encountered. Also, if non-return-to-zero (NRZ) pulses are  used,  a 
sequence of 1’s can  also disrupt  the  synchronization sub-system of an OOK 
system. Unlike the OOK scenario,  one  does  not  require  a  priori knowledge 
of the signal  nor  background  noise radiation levels to implement  an  optimum 
PPM receiver. The  other key requirement of systems  considered for space 
applications is the  peak laser power level that must  be  large  enough to sur- 
vive huge deep-space losses. For this reason!  Q-switched  lasers are typically 
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emplo!d f o r  s1I r .h  applications. The c11rrent technulob?.. hun.e\,eI-. dc,es nut 
SIIIJP(J1.t a scenai.io 1vhel.e a Q-slvitrhed laser can Le toggled Letween the "on" 
and . . u f f "  states at a high rate. limiting severely the  data rate that can Le slip- 

ported llsing an OOK scheme. Hence. an ;\!-ary PPN n.ith large .\! is more 
sllitalle  than its OOIi collnterpart for deep-space applications'. Finally, it 
can Le shown that Al-ary PPN for large A! is more energy efficient than 
its OOK counterpart. which  is of critical importance in a deep space  optical 
communication  environment where energy  consumption is a key constraint 
of the channel. 

For many  deep  space  applications,  due to large  distances  and  pointing  in- 
accuracies. the signal level received at  the  detector is significantly attenuated 
so that only  a  small  number of photons  per PPM slot interval is typically 
observed. Since thermal noise is present at the receiver, the  detection of 
signal pulses in the above condition is significantly  hampered. For this rea- 
son,  avalanche-photodetectors (APD) are utilized to  boost the signal level 
over the  additive noise level present at  the receiver. An APD, in principal, 
magnifies each incident phot.on to a  large  number of post-detection  electrons. 
One major  problem  with  today's  APD's is the excess noise factor of the APD 
which manifest itself as  a  random  gain effect. That is, the  ratio of the number 
of emitted  electrons  in  response to  an incident  photon is a  random  variable 
with known statistics.  Cnfortunately, the complicated  statistics of the APD 
response to incident  photons does not  lead to  a closed form solution for the 
error  rate of optical PPM communication  systems. 

One key approximation for the  statistics of the number of emitt,ed elec- 
trons when the received number of photons  obeys the Poisson statistics is due 
to Webb [l]. This  approximation is shown to be  fairly  accurate over a wide 
range of conditions,  and for this  reason,  this  approximation is widely used to  
assess the error  rates of various optical  communication  systems  with  APDs. 
When the  number of incident  photons  in a slot interval is fairly large (as 
compared to  the APD noise figure) and APD possess a large average gain, it 
has been shown that  the APD's  statistic could be  approximated  by  a  Gaus- 
sian  probability  density  function  (pdf) [2, 31. This  approximation leads to  
a closed form  bit  error rate expression for the PPM channels and is usually 
valid when large  background  radiation levels are  present  (day  time  opera- 
tion). However. for a  large  number of cases where background  radiation level 
is small. the  Gaussian  approximation fails to  accurately predict the  statistics 
of an APD detector. In fact. for small  number of incident  photons. the prob- 
ability  mass  function (PMF) of the  number of released electrons significantly 
departs from a  Gaussian form[2. 31. In that case.  one  has t.0 resort to  the 
~~eLb-~lcIntyre-Conradi ( I I I IC)  pdf. which does not lead t,o a closed form 
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expression for t,he probability of error [l]. hIore significantly, the  reslllting 
expression recplires a prohibitively large wmpllting  time. 

In some recent stlldies, via extensive  simlllation. it has been demonstrated 
that when thermal noise level  is non-negligible, the number of reqllired signal 
photons to achieve a symbol  error rate in a range of - 10~"" using Gaus- 
sian approximated model and  that  predicted by WhIC model are somewhat 
similar for background noise  level  in excess of 1 photons  per PPM slot. Since 
for most applications of interest, one observes in excess of 1 background pho- 
ton  per PPM slot,  the Gaussian model seems to be a  reasonable  model to 
exploit for the above scenario. This by no  means implies that  the Gaussian 
assumption is a valid approximation for all  symbol  error rate levels. It only 
underscores the negligible loss/gain  in  signal  photon  count  associated  with 
Gaussian  assumption for symbol  error rates in the range of low2 - lop3. It  is 
also imperative to  note  that for most  applications an uncoded  symbol  error 
rate of lop2 - is of interest. Obviously, with the inclusion of forward  er- 
ror correcting (FEC) capability,  a  symbol  error rate of lop6, which  is required 
to  support  data communication,  can be achieved. 

Another generic property of optical sensors for detecting  narrow  laser 
pulses is the requirement of high speed electronics to convert optical  signals 
to electrical  currents.  In  general, for deep  space  direct  detection  applications, 
larger  detector  areas could potentially collect more photons,  thus increasing 
the  number of photons  per  information  bit.  Unfortunately larger  detector 
sizes imply lower bandwidth of the  detector, which tends  to smear the ob- 
served narrow pulses over several PPM slots. The proposed T-PPM excels 
in  this  area by allowing overlapping of PPM signalling set.  That  is,  as will 
be  demonstrated in this  paper,  the proposed T-PPWI could circumvent this 
effect without  degrading  the  system end-to-end  performance. Furthermore, 
i t  will be shown in the ensuing  sections that T-PPM can achieve a  perfor- 
mance  similar to  that of its PPM counterpart  at a  reduced  number of photons 
per  information bit.  In  addition T-PPM can  accommodate lower peak  laser 
power during slot detection by integrating energies over several slots. The 
lower peak power  is of critical  importance  in  energy-constrained, deep-space 
communication  systems2. 

In this  paper, we are  interested in assessing the  impact of T-PPM on en- 
hancing the end-to-end  performance of optical  communication  systems  with 
pulsewidth  inaccuracies, which are often present when high power Q-switched 
lasers are employed. The presence of such inaccuracies  results in a significant 
degradation in the overall performance of conventional PPM systems. 

2For energy efficiency, one  must  resort to large  alphabet  size PPM scenario.  In  that 
event,  and for a relatively  high data  rate,  one  must  employ  fairly  short  laser  pulses.  Given 
the fixed required  energy,  this  implies  that  the  laser  nlust  generate a large  peak  power. 
The  large  peak  power  then  beconles a major  constraint of the  system. 



2 System Model 

For an  hI-ary  PPSI  system,  the  transmitted laser power P ( L )  may be de- 
scribed as 

where P, is the peak laser power in watts, h ( t )  is the pulse shape which 
is confined to a PPhI symbol duration T, s ,  Tslot is the  PPM slot duration 
in s ,  C, is the PPM symbol taking on the set {0,1,  ..., hl - 1) with  equal 
probability  with Ad denoting the PPM alphabet size, and N 3 1 is a param- 
eter that will be defined shortly.  Note that Tslot = $ s .  Ideally, the pulse 
shape h ( t )  is confined to a PPM slot duration.  In  that case, one  obtains 
an ideal PPM signaling scheme. In the scenario considered here, however, 
it is assumed that h ( t )  extends beyond a  slot  interval,  causing significant 
degradation in performance. Also, note  that in the formulation shown above 
N is introduced to allow  for one to generate  a  “silent”  period  in between 
symbol durations  in which a PPM pulse is transmitted.  This is typically 
a  requirement for operating  a  high power laser where the transmission of a 
symbol is interrupted by silent periods of several symbol duration  to allow 
for the recharging of the laser. 

Given an unguided  optical  channel,  one  can  describe the  intensity of the 
received optical signal X, ( t )  as 

where X, = 9 denotes  the peak  intensity of the received optical  signal  in 
photons/sec  with 7, P,, h, and u denoting  the  quantum efficiency of the 
detector,  the received power collected by the optical assembly, Planck’s con- 
stant,  and  the  operating frequency of the laser in Hz, respectively. Moreover, 
Xa in (2) denotes the intensity of the background noise in photons/sec  and e, 
denotes the timing  inaccuracy  present due  to imperfect time  tracking at  the 
receiver which is assumed to confined to [-$, 41. 

Since an APD is employed at  the receiver, the collected primary  electrons 
cause the  generation of a large number  of  secondary electrons. In general,  one 
can  assume that for the  fmth  detected  primary electrons, the APD generates 
G, secondary  electrons. The cumulative  generating  function (CGF) of G, is 
implicitly given by [4] 

where pLc, ( s )  denotes the CCF, a = [I + K (3  - l)]/S: and b = 1/(1 - K )  

with and K denoting  the average gain and  the ionization factor of the APD, 
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b,,((? ) - respect,ively. Let I.' = !,2''' - t q  + (2 - j> (1 - K )  denote  the APD noise 
figllre. Then. it can be shown that  the moment  generating  ftlnction of C n L  

may be expressed  explicitly as [5]  

F 
AI,, ( s )  = ( F  - 1)2  [l - J l  - 2 ( F  - qs . ]  - .s + 1. (4) 

F -1  

Note that, by definition, AIGm ( s )  = ePcm('). 

may  be  modeled  as follows: 
The response of APD, in terms of the  current in the load  resistor of APD! 

where t j  denotes the occurrence  time of the j t h  primary  electron,  governed 
by a  Poisson  point  process, R ( t )  is the  current response of APD, and n ( t )  
is the  thermal noise  present at  the receiver.  n ( t )  is commonly  modelled  as  a 
zero mean,  additive  white  Gaussian noise (AWGN) with  a two-sided power 
spectrum  density (PSD) level of 9 = e amps2/Hz  with IC, To, and RL 
denoting  Boltzmann's  constant,  the effective temperature of the receiver in 
Kelvin, and  the APD load  resistance in R. 

At the receiver, the PPM detector  performs M distinct  integrations of 
the observed  current over the M slots of the PPM signal. The symbol  as- 
sociated  with the slot  with  a  maximum integrated  current is declared as 
the  demodulated  symbol.  This  detection  strategy is optimum when the inte- 
grated  current is governed by Gaussian statistics or when a  shot-noise  limited 
(Poisson statistics) scenario is considered [2]. It has also been demonstrated 
that when the  statistics of the APD is approximated  by WMC distribution, 
and  that  the observed  signal is further  corrupted by AWGN, the  optimum 
detection  strategy is identical to  that used for a  purely  Gaussian or Poisson 
channels [6]. Therefore, we use the  detection mechanism  outline  above to 
render  a decision regarding the  transmitted symbol3. 

Let  us define Xl,n as  the outcome of integrating z ( t )  over the interval 
= [ZTYlot + NnT,, ( I  + 1) Tylot + NnT,].  Note that 11,n denotes the Zth slot 

of nth  transmitted symbol4. We then  have 

LT.l,t+NnT, 

31n the  presence of timing  error,  the  above  method  is  no  longer  optimum.  Since  in 
the  ensuing  analysis we consider  negligible  timing  error as compared to  the  pulsewidth 
inaccuracies, we resort  to  the  aforementioned  detection  mechanism. 

'In the  ensuing  analysis,  and  without loss of generality, we consider iV = 4 (each 
transmitted  symbol is followed by a silent  period of 3T, s). T h e  selection of IV = 4 is 
dictated by  the  current  requirements  that  are  imposed  on  high  power  Q-switched  lasers 
which are  being Considered for deep  space  communication. 
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Given that, the APD's clxrent response is sllch t,hat it can be approximated 
with a delta  function, we arrive at  

where U N  is a zero mean  Gaussian  random variable with variance 

e is the charge of an electron in C, and K2 ( 1 ,  n)  is the number of secondary 
electrons observed over The PMF of K2 ( I ,  n)  in its  exact form was orig- 
inally discovered by McIntyre [7] and was  verified experimentally by Conradi 
[8]. This PMF is given by 

" 

Pr {K2 (1,n) = k21Kl (I,n) = kl}  = 

where K1 ( I ,  n) is the  number of primary electrons observed over the interval 
I l , n .  Given that  the primary  electron  statistics obey a Poisson model,  Webb 
has  demonstrated  that  the PMF of the secondary  electron  count  may  be 
approximated  by 

Pr { K2 (I,n) = k2lRl ( I ,  n)  = k l }  = 
- 

where K1 ( I ,  n )  is the average number of primary  electrons  observed over Il,n, 
Cf = g2k1F, and C; = klF/  ( F  - 1 ) 2 .  Given the Poisson statistics,  then 

where 
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and /<!, = At , r lL l , , t  denote  the average nrlmler of primary  electrons observed 
over a PPM slot  interval dlle t,o backgolmd noise. Moreover, = A%9rZ&t,. 

Note that tJhe above formIdation implies that,  the  average number of primary 
electrons  due to signal power observed over the  Ith slot of rlth symbol.  i.e., 
l i -~9k; .n ,  decreases as  the pulses smear in time?  maintaining  the average num- 
ber of primary  electrons observed over a symbol interval (Le., K J )  constant. 
That is, we assume that  the energy observed over a  symbol  interval  remains 
constant  as pulses spread over the adjacent  slots,  leading to less observed 
energy per  slot. 

In the ensuing  analysis, we assume that is negligible (since it is a frac- 
tion of a  slot interval), whereas the inter-symbol  interference caused by the 
shape of the non-ideal pulse shape h ( t )  is assumed to be  quite significant. 
More precisely, we assume that h ( t )  extends  beyond a slot boundary  and 
perhaps  extends over 2-4 slot intervals. This causes severe degradation  in 
performance in  the absence of a strategy to  circumvent intersymbol  interfer- 
ence (13). In  what follows, we assume that  the laser  pulse obeys a  Gaussian 
shape. Namely, 

where we have assumed that  the laser pulse is centered around  the mid point 
of the slot interval and  that  the pulse has a standard deviation of ( ~ h  s. 
Moreover, note that s_”, h (7) d r  = Tslot. This  assumption is motivated by 
the fact that if h ( t )  is replace  with an ideal  non-return-to-zero (NRZ) pulse 
of unit  amplitude, a  similar  result will be  obtained.  This,  in  turn, implies 
that regardless of the value of oi, the  total laser  energy over a symbol interval 
remains constant.  That  is,  as  the pulses are  smeared  in  time,  the  peak  laser 
power  is reduced,  maintaining the constant-energy  assumption that is critical 
to space-born  optical  communication  systems.  Considering that h (t)  extends 
over a few slot intervals and  that we have a silent period of 3 M  slots,  and 
assuming that C, = j ,  we have 

Note that  the  integral on the  right-hand side of the above equation is a 
function of I and j only. 

3 Performance Analysis-PPM  with Imperfect 
Pulse shape 

Given the above model, one can obtain  the performance of a PPhl system 
with imperfect pulses. A key obstacle, however, is the absence of a tractable 
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model for the  statistics of the APD signal when corrlkpted Ly an AFVGN. In 
a recent simlllation st,lldy, it was demonstrated  that  the reclllired K ,  for an 
APD-detected 256-ary PPM signal to achieve an  error  rate in the range of 

over a wide range for K b  (1 5 K b  _< l O O O ) ,  allowing one to benefit from the 
Gaussian  approximation for the above range of symbol  error rate.  Further- 

10 - 2  - 1 p  and  that  predicted llsing a Gaussian model differ only slightly 

more, we benefit from 
rate of uncoded PPi'vl 

union bound  to establish an upper  bound  on the  error 
system  with imperfect pulse shapes. To that  end, 

, hf-1 M-1 

where we have assumed  equally likely PPM symbols. In  the above equation, 
Pr (El,j) is the pair-wise error  probability of making  a decision in favor of 
the Zth symbol when j t h  symbol is actually  transmitted  and F'pJhf is the 
symbol  error rate of the uncoded PPM system. This  error event is only 
possible when the  integrated  current of the Zth slot exceeds that of the j t h  
slot. As noted  earlier, we resort to Gaussian  approximation for the range of 
error  rate  stated previously. If one allows  for such an  approximation,  then 
Xl,n is a  Gaussian random variable when conditioned on Cq (assume = 0). 
Hence, the  mean  and variance of this  random  variable will be of interest to 
establish  performance. To that  end, 

ml,j = E {-&,,IC, = j }  = eg (& + K A , J  + IdcTsLot (15) 

and 

q , j  = Var {-&,,IC, = j }  = (eg)2  F (Kt, + K,Zl,j) + 0; + eIdcTslot (16) 2 

where E {.IC, = j }  and Var  {.IC, = j }  are  the  expected value and  the vari- 
ance of the enclosed conditioned  on {C, = j }  and Idc denotes the surface 
dark  current of the APD in &which is assumed to  be non-negligible here. 
In  that  event,  and considering that  an erroneous decision in  favor of the Zth 
symbol is rendered if- the  integrated  APD  current over the Zth slot exceeds 
that of the  j th  slot (note  that  this is a  comparison between X1,, and Xj , ,  
which are a  pair of conditionally  (when  conditioned on {C, = j}) indepen- 
dent  Gaussian  random  variables), we have 

where erfc(z) is the  complimentary  error  function. Given that  the pulse 
shape follows a  Gaussian pattern, Zl,j and 2j.j may be obtained in terms of 
erf (.) or erfc(.) . However, we note  that 
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and 

U l , ,  2 + 'T I , ,  2 = (Egy F [2K* + K , y  (Zl,, + Zj.,)] + 2 (0; + d , J 9 h t )  (19) 

are functions of 2 j . j  - ZL,, and Z;,, + Zl,j only. Therefore, Zj,, - Zl,, and 
.Zj,j + Z1,j are only of interest.  With  some  effort,  it  maybe shown that 

and 

Now, substituting (20) and (21) in (18) and (19) , respectively, and  then  sub- 
stituting  the resulting expressions in (17), we arrive at  a closed-form expres- 
sion for the pair-wise error  rate of PPM system  with  pulsewidth inaccuracies. 
The remaining task is to  compute  the  upper  bound using (14). We postpone 
a discussion on  the performance of the  system using (14) to section 6 of the 
paper.  Instead, we proceed to describe the proposed T-PPM system  in  the 
next  section. 

4 T-PPM 
It is important  to  note  that  the use of TCM and overlapping PPM (OPPM) to 
enhance the capacity of PPM channels was originally discussed in 191. There 
are  several  aspects of the present analysis that set it  apart from its predeces- 
sor. First,  the analysis in [9] assumes square  shape pulses, whereas we will 
concern ourselves with  Gaussian-type pulse shapes  in  this  analysis.  Second, 
the analysis  in [9] assumes  either  quantum-limited  or shot-noise limited sce- 
narios,  whereas  a  more  realistic situation  (as is done  in  what follows) calls 
for the inclusion of additive  Gaussian noise and APD excess noise factors. 

In the previous  section, we described the performance of a PPM system 
impaired by imperfect pulse shapes. Needless to  say  that  the  impact of an 
imperfect  pulse shape  on  the performance of PPM system may be  quite severe 
for pulse shapes  extending over several slot intervals. Hence, the  introduction 
of TCM is necessary to overcome the  impact of severe IS1 caused by imperfect 
pulse shapes. Due to  the regular shape of the pulse, and from (17), it can 
readily be seen that  Pr (El,,) is a  decreasing  fimction of Ij - I 1  . That is, 
the pair-wise error  rate is a  decreasing  function of the "distance" between 
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symLols j and I ,  where distance is  defined in terms of the nltmLer of PPhI 
slot,s t,hat, exits between the positions ( in time) of the j t h  and Ith symbols'. 
In view of this  observation,  one can proceed with a set partition  st,rategy for 
the  generation of T-PPM signals that is aimed at increasing the minimum 
distance of the PPM constellation. 

We begin  by introducing A = {1,2,3. ....? 111) as a set containing the 
uncoded PPM symbols. Note that  the distance between a pair of symbols 
j and 1 selected from A is simply Ij - I / .  This  set is further divided into 
sets Bo = { 1,3,5,7,  .... } and B1 = {2,4,6. ...}. Xote that a  pair of symbols 
selected from either  one of these sets  are  at a  minimum  distance of 2,  whereas 
the symbols selected from A are  at a  minimum  distance of 1. Next, we 
proceed to sub-divide set Bo to  generate sets Co = {1,5,9, ...} and CZ = 
{3,7,11, ....} . B1 can  also be sub-divided to form C1 = {2,6,10, ...} and C3 = 
{4,8,12, ...}. Finally, we perform one last  partitioning of the previous sets 
to form Do = {119, 17, ...}, D4 = {5,13,21, ...}, D2 = {3,11,19, ...}, DG = 

0 7  = {8,16,24}.  The  entire process is depicted in Fig. 1 for A4 = 256. Note 
that symbols selected from Dj for any j are  at a  minimum  distance of 8. 
Furthermore, symbols selected from Dj and Di are  at a  minimum  distance 
of li - j l  from each other. Although it appears that one can continue this 
process in hope of increasing the minimum  distance beyond 8,  the minimum 
distance between a  pair of paths  through  the trellis (which ultimately  dictates 
the overall performance)  cannot  be increased indefinitely with  further set 
partitioning. Also, since we are only interested in eliminating the impact of 
ISI, a minimum  distance of 4 is sufficient to establish  orthogonality  among 
the symbols in the  set.  That  is, when the imperfect pulse h ( t )  stretches over 
2-4 PPM slots,  a  minimum  distance of 4 slots among  the symbols selected 
from Cj (for all j )  insures that there  exists no overlap among  the pulses in 
the  set. 

Without loss of generality, we concern ourselves with rate  1/2  and 2/3 
convolutional encoders (CE) for the generation of T-PPM signals. As  will 
be shown later,  the  rate 1/2 CE with  4-state  trellis is quite  suitable for the 
problem at  hand,  although  rate  2/3 with  8-state  trellis  can offer a  larger 
minimum  distance (&in). We also note  that  the  alphabet size of the PPM 
is 256 (8  bits), which  allows one to encode 7 data  bits per T-PPM symbol 
(for both  rate 1 /2  and  rate  2/3 CE's, see Figs. 2 and  3). Given that for 
high-power lasers used in deep space communications the frame rate  are 
usually kept constant,  this implies a loss  in the  data  rate by a  factor of 7/8. 
This, however,  is a relatively small price to pay to circumvent the  substantial 
IS1 caused by imperfect pulses. The  rate 1/2 and  2/3 convolutional encoders 
along with  their respective trellises are depicted in Figs. 2 and 3, respectively. 
Note that, for the  rate 1 /2  CE case, a 4-state trellis is used and  that  the two 

(7 ,  15, 23, ...}, 0 1  = {2,10,18, ...}, 0 5  = {6,14,22, ...}, 0 3  = {4,12,20, ...}! 

"Since j t h  symbol is represented  by a pulse  in  the j t h  slot,  the  distance  between j t h  
and  Ith  synlbols  is Ij - I 1  . 
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bit,s prodltced by the  enruder  are rlsed tu selqrt, a set from the follr possible 
C-t,ype  sets CO, CI, C'2. and Cy:%.  The remaining 6 bits  are llsed tlu select a 
signal from the selected set (note  that  there  are 2" signals in any of the four 
C-type  sets). For the  rate 2/3 code, which. as shown in Fig. 3 ,  corresponds 
to an %state trellis, the 3 bits  produced by the CE are used to select one of 
the eight possible D-type  sets. Given that  the code is a rate 2/3 CE, then 
the remaining 5 bits  are used to select a signal from the selected set. Once 
again,  note  that  there  are 25 signals in  any of the eight D-type  sets.  The 
above arrangement,  then, leads to  the existence of a  number of parallel paths 
in the trellises depicted  in Figs. 2 and 3. That is, for each path in the trellis 
shown in Fig. 2, there exist 64 parallel paths  (the size of the  C-type  sets). 
This is a common feature of TCM systems which is due  to  the existence of 
uncoded bits used to select a signal from the constellation. The  number of 
parallel paths for the trellis in  Fig. 3 is 32, which is identical to  the size of 
any of the  D-type  sets. 

5 T-PPM Performance  Analysis 
In Figs. 2 and 3 ,  we have depicted the trellises for the  rate 1/2 and 2/3 T- 
PPM systems  with  4 and 8 states, respectively. When  the  rate 1/2,  4-state 
trellis is used,  one  can easily conclude that  the minimum  distance between 
the all-zero path  and  any  path  that  departs from and re-emerges with the 
all-zero path for the first time is 4. The  path  that leads to  the minimum 
distance of 4 is due  to a symbol selected from CO. For the  8-state trellis, 
we have also  depicted the  path  (dotted line) that is at a  minimum  distance 
of 5 from the all-zero path. Note that parallel  transitions  in  this  trellis  are 
selected from the  D-type  sets,  and hence  a  minimum  distance of 8 exists 
between any  pair of parallel paths in Fig. 3. As noted earlier,  although we 
have been able to increased the  minimum  distance between parallel paths  in 
the trellis via further  set  partitioning,  the minimum  distance between any 
path in the trellis and  the all-zero path has  not  increased  dramatically. Due 
to  the complexity of the trellis in Fig. 3 and  the fact that a minimum distance 
of 4 is sufficient to establish  orthogonality  among the symbols in the  set,  in 
what follows, we limit our discussion to  the  rate 1/2, 4-state  trellis  depicted 
in Fig. 2. To that  end, let us consider the parallel paths in the trellis. Given 
that for any  path  there exists 63 other parallel paths for Ad = 256 in Fig. 2 
(see Fig. l), and  with  the aid of union bound,  an  upper bound on the  error 
rate  may  be  obtained.  This  upper  bound is given  by 

where Pr ( E1,1+4) denotes the pair-wise error  rate for a pair of PPM symbols 
with  imperfect pulse shapes that  are  separated by 4 time  slots.  When h ( t )  
extends over 2-4 time,  then Pr (El,l+,l) is not  a  flmction of 1. 
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Numerical Results 

To underscore the impact of imperfect, pldse shapes, a pair of adjacent 
Galmian-type pldses are  plotted in Figs. 4-6. The laser energy (the  area 
covered by the pulse)  within  one slot time is computed  to be 98%? '78.8'%, 
and 59.51%~ respectively, in Figs 4-6. Note that, for instance, for a slot du- 
ration of 20 ns,  the case depicted  in  Fig. 6 corresponds to a 80 ns pulse 
scenario.  It is immediately obvious that IS1 increases in an  exponential fash- 
ion with oh. Since we are  interested  in  a  scenario where h ( t )  is limited to 
2-4 times  the  duration of a  time  slot, we limit our analysis to  the cases where 

We first consider the case where a  symbol  error rate of is of interest, 
and subsequently we obtain  the required Ks to achieve the desired error  rate 
for a given Kb. Without loss of generality, we limit our discussion to  the 
following system  parameters: M = 256, Tslot = 20 ns, = 40, K = 0.007, 
To = 100" K (cooled receiver), RL = 146.65 k!2, and I d c  = 2 nA.  In Figs. 
7 and 8, the required K, to achieve a symbol error  rate of is plotted 
versus Kb when the above set of parameters  are used. We note  that  the 
Gaussian  assumption considered here  does not lead to performance  measures 
that agree  with the simulation  results  using WMC  statistics for the  entire 
range of Kb when an error  rate of is of interest. In particular, when 
Kb < 50 (Fig. 7 ) ,  the Gaussian  assumption is less reliable than for the 
case of Kb > 50 (Fig. 8). Nonetheless, the loss in K, using the Gaussian 
approximation is not  significant, and hence we proceed with  our  analysis 
using the results shown above. Before doing so, however, it is imperative to  
note  that  the simulation  results for the required K, using WMC statistics 
(for the above set of parameters)  are shown to  be in  a close agreement  with 
those  predicted using the  Gaussian  assumption for a wide range of Kb when 
a  symbol  error rate of lop3 is considered [lo]. Since an error rate of low3 is 
typically of interest, we consider the numerical  results shown below  for lop3 
error  rate  to  be a  good  approximation of the  results  obtained using the  more 
realistic WMC statistics for modeling the APD output  statistics. 

The first  observation that can  be  made  from Figs. 7 and 8 is that when 
a severe IS1 is present (see curves associate  with 80 ns and 20 ns pulses), the 
performance  degrades  substantially as compared to  the perfect pulse shape 
case. The second significant observation is that in the event of having perfect 
pulses, the performance improves using T-PPM. This may be  attributed  to 
the coding  gain.  Note that 1 of the 7 information bits will almost always will 
be  detected  correctly, since the  major  error is due  to parallel  transitions  in 
the  set. 

We also note  that  the gain in performance  as a result of using T-PPM 
increases almost  exponentially  with an increase in oh. In Figs. 9 and 10, 
a similar set of results is depicted when an  error  rate of is of interest. 
We focus on these results, since an error  rate of lop3  is typically needed to 

0 5 oh 5 0-6Tylot s 



insllre a coded performance" of 10 ". 
Before discllssing s l rh  resldts, it  is imperative to  note  that  the proposed 

T-PPhl svstem transmits 7 bit,s of information bits. as compared tu 8 bits 
that  are  transmitted over each symbol duration for the unccjded system. 
Hence, it is appropriate  to consider the required number of photons  per 
information bit in comparing T-PPM scenario to  the uncoded PPhI case. We 
then proceed to use the average number of required photons  per  information 
bit  as a measure of efficiency of the  modulation scheme. Hence, in Figs. 
11-14 we depict the average number of photons  per  information bit that is 
required to achieve the desired error  rates for a wide range of background 
radiation  photon  count. We note, however! that  the loss of 1 bit in order 
to achieve the desired performance given that there  exists  a  limit on laser 
energy is a  reasonable  consideration. Hence, we discuss the performance of 
T-PPM using both  the average number of photons  as well as  the average 
number of photons per information  bit as a  function of background  radiation 
level in  what follows. 

From Figs. 9 and 10, it  can  be concluded that when Kb = 1 (night 
operation)! one  requires K, = 133 to achieve an  error  rate of when 80 ns 
pulses are used (20 ns PPM slots).  This number is reduced to K, = 79 with 
T-PPM, a  reduction of about 2.2 dB in the required laser energy. However, 
as  noted  earlier, T-PPM conveys only  7 bits of information. If one uses the 
number of photons  per  bit, in that case, the required  number of photons  per 
bit reduces from = 16.6 to = 11.2 using T-PPM (see Fig. 13). This is a 
substantial gain in the overall system efficiency. For Kb = 100, the required 
K, to  achieve an  error  rate of when 80 ns pulses are used reduces from 
249 to 187 using T-PPM, a  reduction of nearly  1.2 dB in the required  laser 
energy. The number of photons  per  bit improves from 31.3 to 26.7 using 
T-PPM (see Fig. 14). It is important to  note  that for small pulse spreading 
(60 ns or smaller pulses), the gain  in  performance is not  substantial  and 
hence the gain achieved using T-PPM is only noticeable when substantial 
pulsewidth  inaccuracies are  present. In fact, for all cases considered the 
system efficiency in  terms of number of photons  per  bit increases or remains 
the  same when the pulsewidth is equal or less than 60 ns. However, when 
the pulsewidth is increased to 80 ns,  a  substantial improvement in system 
efficiency  is observed (see Figs. 11-14). 

When  an  error  rate of is of interest  and h - b  = 200, from Fig. 8, 
one  can conclude that a K, = 250 photon is needed7 when 80ns pulses are 
used. This number is reduced to 209 photons for T-PPM system, a  saving of 
0.77dB in the required  laser power. The number of photons  per  bit improves 
from 31.2 to 29.8 (see Fig. 12) a  gain smaller than  that observed for lop3 

61t  is anticipated that T-PPM will be used in conjunction with other more  powerful 
coding schemes. That is, the information bits provided to T-PPhI may be viewed as coded 
channel symbols  provided by an FEC encoder  (such as Reed-Solomon encoder). 

'Note that for this large background radiation level, the Gaussian assumption is fairly 
accurate. 



error  rat,e  scenario. 
Finally, in Figs. 15 and  16, n-e examine the performance of T-PPSI when 

the slot, dllration is redllced with  remaining  parameters kept fixed.  Given 
than  the  contribution of thermal noise and XPD dark  current to  the  outpllt of 
APD have variances that  are  directly  proportional  to  the  integration interval 
(slot duration), as  one  decreases the slot duration,  a gain in performance  (in 
terms of a  reduction in the  number of required  photons  per  information  bit 
to achieve a given error  rate is observed. More significantly, as one 
decreases the slot duration, for a fked background  radiation  intensity level, 
the average  number of received photons  per  slot  decreases  accordingly. As 
seen from these  figures, for the 2 ns  slot  scenario,  a  significant  improvement 
in  performance is observed. This result is not  surprising. To elaborate,  as 
one  decreases the slot duration  with  total number of signal  photons  per  slot 
kept  constant  (i.e., when a  higher power laser is utilized),  the performance 
approaches that of a  quantum-limited  system,  leading to  the considerable 
gain  in  performance  observed in Figs. 15 and 16. 

7 Conclusions 

This  paper  introduced  a  robust trellis-based pulse position  modulation (T- 
PPM) as  a  technique for deep  space  optical  communication and analyzed its 
performance  using  union  bounds. The analysis  assumes the use of maximal 
likelihood receiver for demodulation while the signaling  pulses are allowed to 
extend over several PPM slots.  It has  been shown that using  a  simple convo- 
lutional  encoder at  the  transmitter  and  a Viterbi  algorithm at  the receiver, 
the T-PPM restores the performance losses due to reduced  intensity  during 
the  detection process. 

Furthermore,  using  the  average  number of photons  per  information  bit  as 
a  performance  measure, T-PPM requires less energy than  its regular PPM 
counterpart by affording  a  smaller PPM slot  width.  Numerical  examples 
show that for a  symbol  error of when the received pulses extend over 
4 PPM slots,  the average  laser  energy  per symbol for 256-ary T-PPM could 
be reduced by as much as 2 dB.  In  addition,  the increase  in the  transmit- 
ter efficiency could be  more  profound if the pulsewidth duration becomes 
narrower. 
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Figure 4: A pair of adjacent  Gaussian-type pulses with oh = O.ZT,l,t. 
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Figure 5: A pair of adjacent  Gaussian-type pulses with oh = O.4TSlot. 
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Figure 6: A pair of adjacent  Gaussian-type  pulses  with oh = 0.6T'tot. 
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Figure 7: The required K, to achieve a  symbol  error rate of for 256-ary 
PPM with  imperfect  pulses (oh = 0 (A),  oh = 0.2TSlot (0), oh = 0.4T,lot 
(*), oh = 0.6T,10t (0)). Dashed  lines  represent the performance of uncoded 
PPM, whereas solid lines  depict the performance of T-PPM. 
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Figure 8: The required K, to achieve a  symbol  error rate of for 256-ary 
PPM with  imperfect  pulses (oh = 0 (A), o h  = O.2T,lot (0), o h  = 0.4T,lot 
(*) , oh = 0.6Tslot (0)). Dashed  lines  represent the performance of uncoded 
PPM, whereas solid lines  depict the performance of T-PPM. 
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Figure 9: The required K, to achieve a  symbol error  rate of for 256-ary 
PPM with  imperfect - pulses ( o h  = 0 (A),  o h  = 0.2T,lot (0), oh = 0.4T,lot 
(*), c h  = 0.6Tslot (U)). Dashed  lines  represent the performance of uncoded 
PPM, whereas solid lines  depict the performance of T-PPM. 
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Figure 10: The required K, to achieve a  symbol error  rate of for 256- 
ary PPM with  imperfect  pulses (oh = 0 (A),  oh = 0.2TSlot (0), o h  = O.4T3l,t 
(*), oh = 0.6T,lOt (0)). Dashed  lines  represent the performance of uncoded 
PPM, whereas  solid  lines  depict the performance of T-PPM. 
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Figure 11: The required  average  number of photons  per  information  bit to 
achieve a  symbol error  rate of for 256-ary PPM with  imperfect  pulses 

lines represent the performance of uncoded PPM, whereas solid lines  depict 
the performance of T-PPM. 

(Oh = O (A), Oh = 0.2T31,t (0), Oh = 0.4T310t (*), Oh = 0.6T'10t (0)). Dashed 

25 



Kb 

Figure 12: The required  average  number of photons  per  information  bit to 
achieve a  symbol  error rate of for 256-ary PPM with  imperfect  pulses 
( o h  = 0 (A), oh = O.2T3lot (0), oh = O.4T3lot (*), o h  = 0.6T310t (0)). Dashed 
lines  represent the performance of uncoded PPkl, whereas solid lines  depict 
the performance of T-PPM. 
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Figure 13: The required  average  number of photons  per  information  bit to 
achieve a symbol error  rate of low3 for 256-ary PPM with  imperfect  pulses 

lines  represent the performance of uncoded PPM, whereas solid lines  depict 
the performance of T-PPM. 

( o h  = O (A),  Oh = 0.2T310t (0), Oh = 0.4T310t (*), Oh = o.6T310t (0)). Dashed 

27 



I I 

100 150 20c 
Kb 

Figure 14: The required  average  number of photons  per  information  bit to 
achieve a  symbol  error rate of for 256-ary PPM with  imperfect  pulses 

lines represent the performance of uncoded PPM, whereas solid lines  depict 
the performance of T-PPM. 

(Oh = O (A),  Oh = 0.2Ts10t (0), Uh = 0.4Ts10t (*), Oh = 0.6Ts10t (0)). Dashed 
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Figure 15: The  required average  number of photons  per  information  bit to 
achieve a  symbol  error rate of for T-PPM with  imperfect  pulses when 
Tslot = 2 ns, (A),  8 ns (0), 16 ns (*), and 20 ns (0). For all cases considered, 

0.6Tsl,t. 
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Figure 16: The required  average  number of photons  per  information  bit to 
achieve a  symbol  error rate of for T-PPM with  imperfect  pulses when 
Tslot = 2 ns, (A),  8 ns (0) , 16 ns (*) , and 20 ns (0). For all cases considered, 
g h  = 0.6TSlot. 
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